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Abstract: It is suggested that tidal interaction of an accreting planetary
embryo with the gaseous pre-planetary  disk may provide a mechanism to breach
the so-called runway limit during the formation of the giant planet cores.
The disk tidal torque converts a would-be shepherding obj ect into a
“predator”, which can continue to cannibalize the planet.esirnal  disk. This
is more likely to occur in the giant planet region than the terrestrial
zone, providing a natural cause for Jupiter to predate the inner planets and
form within the 0(107) year lifetime of the nebula.
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I. INTRODUCTION

One of the tightest constraints on models of solar system formation is

the suspected 107
year lifetime of the solar nebula inferred from

observations of T-tauri stars (Adams and Shu, 1986; Walter, 1986). The

existence of gas giants like Jupiter and Saturnj establish that the planet

building process for these objects was essentially completed before nebula

dispersal. These planets are believed to have acquired their H/He component

by gas accretion onto preexisting solid cores with estimated masses of 10-20

M~, where Me - 6 X 1027
g denotes the mass of the earth (Mizuno, et al. ,

1978: Bodenheimer and Pollack, 1986; Podolak, et al., 1993). If this model

is correct, we must account for the accretion of 0(102$’)g  cores within the

lifetime of the gas disk.

II. RUNAWAY GROW.I’H

Current models of solid body accretion indicate that large embryos can

form in a relatively short time scale due to the orwet of accretion runaway

(Greenberg et al., 1978; Wetherill  and Stewart, 1986, 1993; Ida and Makino,

1993) . This runaway is due to a strong feed-back loop in the growth rate, M

- oflnR2F~ , through the gravitational enhancement factor, F~, where a is the

surface density of solid material in the disk, !J is the embryo’s mean

motion, and M and R are its mass and radius, respectively (e.g., Greenzweig

and Lissauer, 1990; Lissauer and Stewart, 1993). The enhancement factor is

the ratio of the effective collision cross section to the geometrical cross

section. If the relative velocities, v, are dominated by velocity

dispersion instead of disk shear, the enhancement factor reads F~ - 1 +

(v,/v)2, where V. = (2GM/R)lJ2 is the embryo’s escape velocity. Eventually,

the embryo will grow large to stir the local planetesimal  disk, (Lissauer,



1987).2
This limits the enhancement factor ttc] F - (ve/<1.il)2  = 103< -2 (r/AU)

s

and the characteristic growth time, r = R/R, becomes

(1)
pp R

7 ~ = 16<2(&)(~)(-&)
ZiF l’zyears.

g

For values, u - 4 g/cm2, pP = 2 g/cm3, r - 5 A.U., < - 4, considered

appropriate for the jovian zone, eqn (1) implies that a 15M@ giant planet

core could accrete in s 0(107) years.

However, there is an apparent obstacle to the formation of such full-

sized planetary cores via runaway growth: that of local mass exhaustion.

Dynamical friction tends to cause embryo orbits to become very circular

during their growth (Greenberg, et al., 1978: Stewart and Wetherill, 1988;

Wetherill  and Stewart, 1989) . There is critical value of the Jacobi

constant below which a test particle cannot enter the Hill sphere of a

object in a circular orbit (e.g., Hayashi et al. , 1977). This corresponds

to a circular test body orbit with differential semi-major axes Aa = 2~7L,
c

where L = r(M/3Mo)l’3 is the Hill sphere radius. This has often been

interpreted as an “effective accretion range” for a growing embryo

(Lissauer, 1987; Artymowiczj 1987; Wetherill and Stewart, 1989; Wetherill,

1990; Lissauer and Stewart, 1993).

Hill radius, i.e., AaC a Mlf3; the

scale linearly with the mass. Thus ,

2mar(2AaC), which implies a limiting

(2) MR - ~~(8nor2/Mo)3i2Mo

Although this range increases with the

width of the cannibalized zone should

these widths become comparable when M =

runaway mass of

2
Objects experiencing a close encounter without impact. , will rs-encounter

the embryo with a dispclrsion velocity on the order of Lhe escape velocity

from its Hill sphere, i.e., v - O(CLO), where L is the Hill sphere radius

and f is a constant of order unity that depends on the damping mechanism(s)
(e,s., Gr61enZW13i8 and Lissauer,1990; Ida and Makino, 1993).
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At this point, the embryo is assumed to hqve largely isolated itself from

the planetesimal disk so that runaway growth stalls. Further growth would

have to rely on diffusion of planetesimals  into the gap (Hayashi et al.,

1977; Artymowicz, 1987) or on some other mechanism to

such as gas drag (e.g. , Weidenschilling, 1977; Nakazawa

The time scales for these processes are not given by eq

longer.

supply new material

and Nakagawa, 1982).

(1) and can be much

For the jovian zone, % = 2M@, which is about an order of magnitude too

small for a giant planet core. It is the purpose of this letter to point

out that this so-called runaway limit may be breached by strong disk-planet

tidal interactions between the forming embryo and the remnant nebula that

have not previously been included in these calculations.

It is well

near a particle

III. TORQUE BALANCE

known from planetary ring studies, that an object orbiting

disk experiences a torque

(3) T-- fC~p2(ur2)(r$J)2  (:)3

that tends to repel the perturber from the disk, where w is the distance to

the disk edge, r is the embryo’s orbital radius, P * M/M. is its mass

normalized to the primary, and Cd is a constant of order unity (e.g.,

Goldreich and Tremaine, 1979, 1980; Lin and Papaloizou, 1979). 3 If the

embryo occupies a gap in a disk, it experiences a positive (negative) torque

from the interior (exterior) portion of the djsk. Acting alone,

3
A VC31U13 of Cd = 0.83 can ba derived for a particlo disk composed of nearly

circular orbits, (e.g., Goldreich and Tremaine, 1982).

4



these torques keep the embryo roughly cencered in the gap, i.e. , T(wi) +

T(wO) - 0, when Wi = WO . However, in the presence of the nebula, the embryo

experiences an additional tidal torque

(4) AT - C&p2(o~r2) (ri2)2(~)2
g

due to its density wave interactions with the gaseous disk (e.g. , Goldreich

and Tremaine, 1980 ; Ward, 1986, 1989 ; Korycansky and Pollack, 1993;

Artymowicz, 1993). In eqn (4), Ug represents the gas surface density, h -

c/fl is the scale height of the nebula, c is the gas sound speed, and G8 is a

constant of order unity the exact value of which depencls  on the structural

details of the nebula (see s V). As with ring torques, eqn (4) arises from

the gravitational attraction of the embryo for spiral density waves that are

launched at various Lindblad resonances between the

(e.g., Goldreich and Tremaine, 1979a; Shu, 1984).

negative torques on the perturber, inner resonances

The origin of net cumulative torque, AT& , is a

strengths of outer and inner Lindblad resonances due

the disk (Goldreich and Tremaine, 1980; Ward, 1986).

perturber and gas disk

Outer resonances exert

exert positive torques.

“mismatch” between the

to global gradients of

In addition, there is a

torque contribution from coronation resonances that fall at the orbit of the

perturber (e.g., Ward, 1993; Korycansky and Pollack, 1993). The sign”of Cg

is negative for most model calculations and we shall make that assumption

here, although this is not crucial to our argument. This additional torque

causes the embryo to be displaced inward from the center of the gap to

occupy the torque balance position given by T(wi) + T(wO) +- AT~ - 0. This

provides a constraint between the distance tc) the inner edge, Wi , and the

gap’s the “aspect” ratio, w~/wO = V,

5



. .

{5) c (>) 3 - a(:)z(l - q3)

where a = u/u ~ is the solid/gas ratio and C = lC~

tl+l, wi=w~; but for lCg] >0, q<l, w~ <wO.

/cd . In the limit C~ + O,

If most of the disk material within the bc)undaries of the gap is

accreted by the embryo, its mass isM= 27rurwi(l+~-] ). As before, the

assumption is made that accretion runaway stalls when Wi > Aa
c“

Substituting AaC for Wi , yields

(6)

which can be combined with eq (5) to find

(7)

Fig. 1 shows the behavior of v(K) ; the right-hand scale shows the

corresponding value of M(K) normalized to ~. A maximum allowed K occurs at

dK/dq - 0 for which l-3q3-2q4 == O. This has the solution, q. = 0.618 and a

mass from eq (6) of M. = 1.498%. The value of K. from eq (7) is K(q*) =

0.510.

There are two branches to v(K) for K < K, ; it is the upper branch that

is relevant to the runaway process. The lower branch, at smaller q,

corresponds to equilibrium states where th c outer edge is increasingly

remote and the torque balance is essentially between the nebula and inner

disk tides only, For comparison, the curve, K -- MR/M - [2~\(l+q)]3’2, for

a perturber orbiting just outside a disk, i.e. , T(wi==AaC)  + AT = O, isg

indicated by the dashed curve in Fig. 1.
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IV. SHEPHERD OR PREDATOR

Torque balance with Wi > AaC is not possible for K > K. , which implies

a critical value for the torque constant ratio

(8) c-
~K~h r)2

crit 5 - -*8 3 pR

above which the embryo cannot isolate itself from the planetesirnal  disk. If

the torque constant ratio, C, exceeds this threshold value, the nebula tidal

torque will convert a would-be shepherding object into a “predator” that can

continue to consume the planetesimal  disk. Relaxing the constraint w =i
.

Aa= , eqs (5) be used to find the “stand-off” distance, Wi , as a function of

M/&$ for a given K,

(9) M/M =R ;E-)p  +  [1 -  K&-)’l-’”}
R R

where Aa~ - AaC(~). Fig. 2 compares Aac
with the stand-off distance given

by eq (9) for several values of K. Note that as M >> ~, Wi approaches a

constant value, wi m A~/Kli3 _ 4~~(2rur2/Ma)l  12r/K113. This is because

both T and AT~ are proportional to M2 so that once the outer edge is remote,

Wi must assume a constant value to balance the torques, independent of mass.

It is clear that for K > K*, Wi never exceeds AaC for any M so that

isolation cannot occur. As the edge of pl.anetesimal disk is stripped away,

the nebula torque causes the embryo’s orbit to decay, maintaining a small

enough stand-off distance that the perturber can continue to accrete

material.

So far, the effect of the reaction torque, -T, on the location of the

disk particles has not been explicitly taken into account. For instance, it

is well known that the shepherding action of a satellite on a planetary ring
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can nudge material away from the satellite ~(Goldrei. ch and Tremaine, 1979b) .

However, a key difference between shepherding in a planetary ring vs a

planetesimal  disk is that in the latter, the optical depth, ~ - a/PPR = 10-

5(R/km)-1, is low and collisions are much less frequent.’ In this case, any

epicyclic motion generated at an encounter does not damp out and particles

repeatedly re-encounter the embryo with a non-zerc) eccentricity. In both

ring and disk environments, particles suffer shepherding, i.e., a recoil of

their semi-major axes away from the embryo. The crucial difference is that

the Jacobi constant is generally decreased by particle collisions in a

planetary ring, but is nearly conserved in tile planetesimal disk when such

collisions are rare. If we interpret the half-width, w(J), appearing in eqn

(3) as referring to the e = O (reference) orbit of those particles with the

greatest Jacobi constant, then w(t) increases in a ring of high optical

depth, but remains nearly constant in the planet.esimal disk. Hence, the

shepherding of semi-major axes in the planetesimal. disk does not remove

particles from the accretion zone. In this interpretation of equation

any effect of heating on the torque strength has been absorbed into

coefficient, C~(e,w), which is now to be considered a function of

(3),

the

the

particles’ epicycle motions. Its behavior could be found by phase averaging

numerical integrations of Hill’s equations , We have not included such a

procedure in this brief communication, but will report such results in a

subsequent publication, Here we have been content to determine the critical

torque coefficient in terms of the ratio C = Icgl /cd ~

4
Note that the collisional time scale, - (TII) -1

is longer than the synodic

period at the Hill radius if 7 << 0(u1’3),  w~ich is easily satisfied by

kilometer sized planetesimals in the vicinity of an earth mass embryo.
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V. TORQUE STRENGTH

In terms of the constants adopted for the jovian zc)ne, a = o/u8 - 10-2,

h/r - .07, r - 5 AU, p~ - 6.3 X 10-6, the critical torque ratio is

(lo) c - --)-2(-%-3’20029[&)(16~uJ  [SZAUcrit
4 g/cm2

By comparison, setting r == 1 A.U., u = 7 g/cm2, T = 1030K, a = .0036, as

representative of the terrestrial region, eq (10) gives CCrit - 7.0. The

increased threshold value, CCriJIAU)/CCrit(5AU) - 24, in the terrestrial

zone. implies that embryo isolation is much easier to achieve there.

A recent attempt t:o determine C~ in terl[w of the structural gradients

of the nebula has been made by Koryc:insky and Pollack (1993) . Numerical

integration of the 2D fluid equations for power law models of the form u a
g

r-k, T a r-l, yields, C; - -3.2(1+-. 28k+.8l.l) for L.indblad torques and Cc ==g

2.0(1- .63k) for coronation torques, where only linear terms have been

retained. The Lindblad value is consistent with an earlier semi-analytical

estimate by Ward (1986). Both authors found that the kepl.erian  rotation of

the gas disk was a important source of differential torque. For disks with

k, 1 - o(l), Icgj - ]C:+C:I = 6. Ward nc>ted that these values, which

pertain to a 2D disk, would likely be decreased by a finite thickness of the

disk. This has been confirmed by Artymowicz (1993) who has used a

vertically averaged potential together with an improved model for disk

response at a Lindblad resonance to estimate the torque. Artymowicz’s

calculations indicate that vertical averaging causes nearly a 50% reduction

in the differential torque.

5
Depending on phase, successive ancounLers can either increase or decrease

e. From the Jacobi constant, changes in the semi-major axis obey 6aia = -

d(e’)nl(n-ns)  and the angular momantum,  H, lost by the particle per synodic

period is AHIP = 6(e2)(an)2/bm  = H.syn
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Interestingly, if Cd 5 O(1) , C could lie between the threshold values for

the terrestrial and jovian regions for reasonable disk models. Although

current calculations of the torques are not yet reliable enough to make such

precise predictions, this problem makes it clear that f“urther  refinement of

these calculations is a high priority issue.

VI. CONCLUSION

A

growth

of gas

failure of an embryo to

toward the critical core

accretion will alter the

achieve isolation may permit its continued

size for gas accretion. The eventual onset

local configuration of the gaseous nebula.

Development of a low density zone in the gas disk surrounding the core

should abort the nebula torque and stabilize the orbit. In addition, the

protoplanet becomes a sink for any later clecaying embryos which attempt to

follow the same evolutionary track - unless they are well enough spaced at

the outset, e.g., a potential Saturnian core. A distinct advantage of this

scheme is that it does not require a large excess of material to account for

rapid core growth, most of which must later be removed from the system

(Lissauer,  1987; Lissauer  and Stewart, 1993). An intriguing additional

possibility is that embryo isolation COUICI still have occurred in the

terrestrial zone, stalling the runaway process there. Growth to planetary

size in the inner solar system could have proceeding along the slower,

stochastic accretion route as described by Wetherill (1990). This implies

that Jupiter may predate the terrestrial planets, a situation consistent

with ideas concerning its role in the development of the asteroid belt

(Wetherill, 1992). This also suggests that not all planetary systems will

necessarily have giant planets. From eq (8), it is clear that small values

of pR favor embryo isolation. Thus , small disks, (low mass and/or radius)
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may not be conducive to rapid core formatioq and may tend to develop systems

of smaller, more numerous planets,
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FIGURE CAPTIONS
Fig.1. Gap aspect ratio, q = w WO, as a function of nebula torque

fstrength, parametrized by K = 8 3C(p~/a)(r/h)2 . Upper branch (q > q.)
applies to runaway limit. Lower curve asymptot.icall.y  approaches dashed
curve for an object orbiting Aa outside a disk. Right-hand scale shows
corresponding embryo mass normalized to value, % , when K = O.

Fig.2. Distance from embryo to interior edge of gap, i.e., “stand-off
distance”, as a function of embryo mass for different values of K. Shown
for comparison is accretion range Aa e 2./~(M/3Mo)l13r. Runaway growth
stalls when Wi > AaC ; this is possible ‘only for K s K. .
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